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ABSTRACT
The main result in this paper is:
Theorem: If H € C'(R®™,R) and satisfies
(Hy) 2" 1(1) bounds a starshaped neighborhood of 0 1in R?“,
(Hy) z+ H, #0 for all z e H (1),
(Hy) H(p,q) = H(-p,q) for all p,q € K, then there is a T > 0 such that

the Hamiltonian system

. 0 -1d
(HS) z= Hy(z), = (.4 o)
possesses a T perlodic solution (pl(t),ql(t)) € H'1(1) with p odd about
0 and T/2 and q even about 0 and T/2.

The proof involves a new existence mechanism which should be useful in

other situations.

AMS {MOS) Subject Classifications: 34C25, S58E05, 58F22, 70H05, 70H25, 70K99
Key Words: periodic solution, Hamiltonian system, minimax methods
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SIGNIFICANCE AND EXPLANATION

’ Hamiltonian systems are used to model the motion of discrete mechanical
systems. This paper establishes the existence of periodic solutions for a

class of such systems. The method developed to prove existence should be

, ., )
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ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR A CLASS OF SYMMETRIC HAMILTONIAN SYSTEMS
Paul H. Rabinowitz
§1. Introduction

Consider the Hamiltonian system of ordinary differential equations:

0 -id)
ia 0’ °

Here H : " + R, z = (p,q) with p,q € B, and 14 denotes the n % n identity

(HS) z=Ju(z), J=(

matrix. Several papers have investigated what conditions on H 1lead to the existence of
periodic solutions of (HS) having prescribed energy, i.e. H(z) 1is a given constant. See
e.g. {1-11]. (Other studies such as [12] treat the multiplicity of periodic solutions of
(HS) of prescribed energy.) 1In particular, it was shown in [4]) that
Theorem 1.1: If H ¢ C'(R2",R) and satisfies
(Hq) H'1(1) is the boundary of a starshaped neighborhood of 0 in n?n'
and
(H) z * H (z) £0 on H Y1),
then (HS) possesses a periodic solution on H-1(1).

In Theorem 1.1, "starshaped" means H'1(1) is homeomorphic to 52"" by a radial
projection map.

Our goal in this paper is to show that if H satisfies an additional symmetry
condition, (HS) possesses a periodic solution having additional properties:
Theorem 1.2: If H € C'(R°",R) and satisfies (H,)-(H,) and
() H(p,q) = H(-p,q) for all p,q ¢ X',
then there exists a T > 0 and a T periodic solution (p(t),q(t)) of (HS) on

a!

(1) such that p is odd and q 4is even about ¢t = 0 and %-
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Periodic solutions of this type were studied by SEIFERT [1), RUIZ [2], WEINSTEIN [3],

GLUCK-ZILLER {7]), HAYASHI (8], and BENCI (9] for c? or smoother H's satisfying (Hy) *

and having the form H(p,q) = K(p,q) *+ V(g) with K and V suitably restricted.

Different symmetries for (HS) have been treated by van GROESEN [10] and GIRARDI {11). 1In

[10] it was shown that if H € cz, satisfies (Hz), H'1(1) bounds a convex region and

H(p,q) = H(-p,q) = H(p,~q) for all p,q € Rn, then the conclusions of Theorem 1.2

1

hold. The convexity assumption on H™ '(1) plays a strong role in the existence argument

here. In [11] on the other hand, (H1)-(H2) and H(z) = H(-z) are assumed and it is

proved that there is a T > 0 such that (HS) possesses a 271 periodic solution on

H~'(1) for which =z(t + 1) = -z{t) for all t « R.

Both [4] and [11] rely on minimax arguments and topological index theories to exploit

an S1 symmetry associated with a variational formulation of (HS). Topological index

theories are often useful in obtaining multiple critical points of a symmetric functional

and indeed such multiplicity results were the main goal of [10-11] and enabled them to

j obtain analogues of a theorem of EKELAND and LASRY (12). For the problem treated here

however, we will work directly in the space of T periodic functions p,q for which p

is 0dd about t = 0 and T/2 and gq is even about 0 and T/2. The gymmetries used

earlier in [4,10,11] are not longer present if one works in this space and therefore

-~ another existence mechanism to treat (HS) is required. Indeed developing such a new

mechanism is one of our main goals here. 1In a future note, we will show how this method

can also be applied to treat the sort of situation studied in [1-3,5, etc.).
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In §2, the solution of (HS) will be reduced to finding a critical point of an .
2

:
¢ v

Lot A

€
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R associated variational problem. Existence of a critical point when H € C is carried

1

out in §3. Lastly §4 contains the C case as well as the proof of a crucial

intersection theorem used in §3. For some of the technicalities of §2-4, we have

benefited from unpublished work of V. BENCI and the author.
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§2. Formulation of the Variational Problem -,

In this section the solution of (HS) will be reduced to finding critical points of a

b
E variational problem. For technical convenience we assume for now that !_g_g?(lznll). ::;"
; The more general case of H ¢ c’(nzn,n) will be treated in §4. ::j 3
; The variational formulation of (HS) will take place in an "Lz” type of setting and & .:
{ therefore the behavior of H outside of H'1(1) is important. Thus as in [4] we Aefine '~”i“
t a new Hamiltonian H(z) which coincides with H on H-1(1) and grows at a controlled :iél-
r L

rate as |z] + =. Since #-1(1) bounds a starshaped region, for all z € nzn\{o), there t:;;.

is a unique a{z) > 0 and w(z) € H"(H such that z = a(z)w(z). In fact, w depends &:

only on z|z|™! and a(z) = lz}jw(z)|~". Define f(0) = 0 and for z # 0, H(z) = a(z)? o

It is easy to check that H ¢ c2(r2™\{0},R), ﬁzz is uniformly bounded, and f is :2i{-

homogeneous of degree two. Moreover H_ 1(1) = 8 '(1) ana fi(p.q) is even in p. For ;Eit:

future reference, note the following estimates for H. Let ’;:%E

(2.1) m = mfn A(z): M= ‘me H(z) . ;‘“f

Then by the homogeneity of H, for all z ¢ e, ;L;E}

(2.2) mlz|2 < fi(z) < M|x]2 . k-

Lemma 2.3: Suppose there exists X > 0 and a 21 periodic solution [f(t) = (e(7),¥(T))
(2.4) § = AA,(5)

with 2(t) e i"T(1), o odd about 0 and % and ¥ even about O and w. Then there
exists a T >0 and a T periodic solution of (HS) of the type stated in Theorem 1.2.

Proof: Set z(t) = [(r(t)) where r ¢ C1 is free for the moment. Then 2z is a

solution of (HS) if

(2.5) z = VA (Z(r(£)))r = JH,(3(x(1))) .

since 1 '(1) = @"!

(1) ana H,, ﬁz # 0 on this set, there is a function
8 ¢ ¢'(u”1(1),R\{0)}) such that fi,(z) = B(z)H,(2) for z ¢ H™'(1). Therefore 2.5 shows

(2.6) £ =28zt .

Further setting r(0) = 0 and noting that B8 # 0, we can assume B8 > 0 and r is a
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strictly increasing function of t. Let T = 2t-1(')- Then the properties of { imply

if Z(t) = (P(t),Q(t)), P(0) = 0 = P(T/2) and Q'(0) = 0 = Q'(T/2). Extending P as an
odd function p about 0 and T/2 and Q as an even function g about 0 and T/2,

it follows that the resulting function z = (p,q) 4is a T periodic solution of (HS) on

W 1(1) of the desired type.

Thus Lemma 2.3 reduces the proof of Theorem 1.2 to finding A > 0 and a 2»
periodic solution { of (2.4). We will convert this question to that of solving a
variational problem. First an appropriate function space must be introduced. Let
X = {z = (p,q) € wivi'z(s1,n?“)|p is odd about 0 and ¥, q is even about 0 and rn}.
Yy 1261, g2ny

Here W is the set of 2n tuples of 27 periodic functions

zZ = 2 ajeijt
jeZ
such that
I e lshlayl? cm.

jez

Por smooth z € X, 1let

2% .
(2.7) Au)-g pe*qat.

Then

2
]A(z)] < const. lzlw b& ,2 !

i.e. A 1is a continuous quadratic form on this (dense) subspace of X. Therefore A
extends continuously to all of X. This extension will still be denoted by A(z).

Let ey,...,e, denote the usual basis in R, i.e. e, = (1,0,0,...), etc. and
set
Xy 2 span{e,fn + 1 <k < 2n} ,
X" = span{(sin jtle, - (cos jt)ek+n|1 <3 <®, 1<k <n},

X" = span{(sin jx)e, + (cos jt)ek+n|1 <j <=, 1<x <al).
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These spaces are mutually orthogonal in L2(81,R?"). Moreover X = x0 o x* e x” ana if

z=20+2t 42" €3,

2 -
(2.8) 120% =2 1292 + A(zh) - A(2T)
Y, 02,1 g2n
defines a norm on X which is equivalent to the W 2'“(s’',R®") norm. (See ea.g. [4].)
Setting

12
(2.9) ¥z) = o7 [ Hzlee,
0

the upper bound for H in (2.2) implies ¥ is well defined on X.
Proposition 2.10: With # as above,
(1) v e cHliP(x,m),
(i4) Y* is compact.
Proof: (1) Since H ¢ c2(R?™\{0},R) and f,, is uniformly bounded, there is a
constant M, > 0 such that
(2.11) |fz + &) - fitz) = B,02) « ¢] < Mylc|?
for all z,; ¢ i?n. Therefore for £, € X, (2.11) and the continuous embedding of X

in 12(s',®®") imply that

1 Rr 2 2
(2.12) ¥z + &) = Y(2) - 57 & fip(z) » ¢ at| < n1|;|L2 <m0
Thus (2.12) shows that Y € c'(X,R) and
1 2n

(2.13) ¥r(z)g = o { A(z) «gae.

To see that ¥' is Lipschitz continuous, observe that

3 an
(2.14) ¥z +w) - 9 {2)0 = sup |3; [ @z +w) = R(2)) ¢ gae| .
X gex, i<t 0
5
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4 Since #,, 1is uniformly bounded on R?"\{0}, there is a constant M3 > 0 such that %} X
(2.15) [B(z + w) - B (2)] < My]w] F
:' 2n AN
f for all z,# € R*'. Hence (2.14)-(2.15) imply yr\
A o
S
H ; 0K
(2.16) 19°(z + w) = ¥'(2)0 <M, sup -;f lwllclat < m aw P
X zeX, 151K 0 :
a,
v N ‘
N for all z,w € X. SVl
.:" " -.‘(.
Lo (ii) Let (zj) be a bounded sequence in X. Since X 1is compactly embedded in %f':é
- oo

o -
g

1TsV,rR?M) for all r e [1,%), (see e.g. the argument for an analogous situation in

{13])), along a subsequence, zj converges in Lz(s1,R2")

.17 -y ] < -
(2 ) iy (z ) ¥'(2) x, M4lzj zle +0

to z € X. Hence by (2.16),

and Y¥' 1is compact.

Let M = ¥ '(1).

Propogition 2.18: (i) M is a c"'UiP panifold in x.

(ii) M bounds a starshaped neighborhood of 0 in X.
(iii) M is bounded in 12(s',R2™).
Proof: For z € X\{0}, by the homngeneity of #i,

2w

1 -
(2.19) ¥'(z)z = ;‘-g A (z) « 2 dt = 2¥(z) > 0 .

Hence M is a manifold and (i) of Proposition 2.10 shows it is R Moreover M ig

the boundary of V~1(-°,1), an open set. The homogeneity of H shows that any ray
through the origin in X meets M exactly once. Hence M bounds a starshaped region.

Lastly by (2.2), if z e M,

2
(2.20) %'—r- 1z1°, < ¥(z) = 1,
L

2n

i.e. M is bounded in 12(s',rR®").

-6-
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We will find a solution of the desired type as a critical point of AfM. This
functional is said to satisfy the (ps)* condition if for any ¢ > 0, whenever (zj) is

a sequence in M such that

(2.21) A(zj) + e
and
= - L]
(2.22) Alylzg) = A'(zy) = Mz¥'(zg) + 0 in X
where
AMz) = (A'(2),¥'(2)) ¥ (202,
X X

then (zj) possesses a convergent subsequence. Thus the (PS)+ condition is a kind of
compactness condition. It is important that A|M satisfy this condition in order to
construct the “deformation mapping" used in §3.

Proposition 2.23: AIM satisfies the (PS)* condition.

Proof: Let (zj) C M and satisfy (2.21)-(2.22). Writing zy = z; + z; + zg exteo

x~ ® x°, (2.22) and the homogeneity of A show

2 t n . Lt t
{2.24) lzjl A'(zy)(22]) < |X(zj)| g B,(z5) zjdtl + ejlzjl
where €y * 0 as 3 + =, Since (zj) is bounded in 12(s',R?™) as is (ﬁz(zj)) via

(2.15), by (2.24) and (2.8),

2
(2.25) 1z 1° < aptirazpl + v
Now by the homogeneity of A and H,

- - - . .
(2.26) 2|A(zj) X(zj)| IA-(zj)zj Mzy)Y¥ (zj)zjl < ejlzjl
Combining (2.25) and (2.26) gives

- 1/2

(2.27) lA(zj) x(zj)l < a2(|k(zj)| + 1) .

Recalling that A(zj) +c, (2.27) shows X(zj) is a bounded sequence and (2.25)
implies (zj) is bounded in X. Consequently (2.26) yields A(zj) +¢c> 0. Let L

denote the duality map from x" to X. Then

-7
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.. (2.28) L(a (z4) Azy)¥(24)) 2y - z4 X(zj)LY (zg) + 0 .

Thus the boundedness of (X(zj)) and (zj), (1i) of Proposition 2.10, and (2.28) show . E
41' - ~l\.
- z;, zy. and - since x° is finite dimensional -~ zg converge along a subsequence. vl

s

N P
LY
!i
"
o,
>
-~
~
.l

P e O
DPL PP, A VAR 0 L VR AP S




- . " . D - A T et .
(W T Gy S PR, "l P L. S L, . N T A T R T

" DR DR A St T T PO TSR TR ST PR
s VSIS TR T TGRS W SR ST AN WL S W P

§3. Existence of a Solution

In this section, the existence of a critical point of AIM will be established.
Standard arguments then lead to a solution of (2.4) and hence (by Lemma 2.3) of (HS) of
the desired type. A minimax argument will be used to get a critical point of AlM. An
important role in any minimax argument is played by the so-called daformation mapping.

The following proposition lists its properties in our setting. For ¢ > 0, let
A.=(z ¢ Ml{a(z) < ¢} and
K, = {z e M|A(z) = ¢ and A[d(z) = 0} .
Proposition 3.1: Let ¢, € > 0. Then there exists an € ¢ (0,€) and 1 € C([0,1] x X,X)
such that
1° n(s,*) 4is a homeomorphism of X onto X for each s ¢ [0,1].
2° n(1,2) =z if Alz) £ [c - €,c + E] and if [¥(z) - 1] >%.
3° In(1,z) - zh < 1.
4° n(s,M) =M for each s € [0,1].
5° 1¢f P*,P' denote respectively the orthogonal projectors of X onto x*,x’, then

36(9,2)11

Ptn(s,z) = @ + Kt(S.z)

where 8 € C([0,1] x X,R+) and x* is compact.
6° It K, =4, n(1,A ) CA__,
Proof: Most of the assertions are standard. In particular 1° and 6° as well as the
precige definition of w below can be found in [14). (It is in proving 6% that the
(ps)* condition is used.) Therefore we will only verify 2°-5°,
The function n satisfies an ordinary differential equation of the form

(3.2) g% = =w(n)L[A'(N) = A(M¥'(n}] n(0,2) = 2

for z € X. The function w ¢ C(X,R) is Lipschitz continuous and is chosen so that
0 < w(z) € 1, the right-hand side of (3.2) in norm does not exceed 1, w(z) =0 if

Alz) £ [c - €, + E] or if |¥(z) - 1] > 1 , and w(z) # 0 if z e M and A(z) s

near c. This implies that (3.2) has a solution n(s,z) € C(R x X,X) satisfying 29-39,

ut

The form of the right-hand side of (3.2) shows Y'(n(s,z)) 4n

0 and therefore
ds

-9-
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¥(n(s,z)) = ¥(n(0,z)) = ¥(z). 1In particular if z ¢ M, so is n(s,z} and 4° holds.

Lastly to prove 5°, note that L[A'(z) = zt - z”. Therefore Ptn £ n! satisfies

(3.3) %:—f t wimn® = wma(me® L¥(n)

Treating n as being known, (3.3) shows nt satisfies an inhomogeneous linear equation
whose solution is

(3.4) ntis,z) = [exp(= gs win(r,z))dr) iz + x¥(s,2)

where
+ -3 T +
X (8,2) -{ lexp(/ w{n(r,z))dr)}s (n(t,z))dt
8

and

* +

S (y) = o(y)A(y)P” LY'(y) .
Thus n is of the form asserted in 5°.

* : X+ X is

It remains only to show that Kt is compact. Note first that S
compact. FPFor convenience we drop the superscripts * for S and K. Indeed if (yj)
is bounded in X and Y(yy) £ (% ' %) along some subsequence, then w(yy) = 0 and
s(yj) = 0. Thus we can assume ?(yj) € (%-, %) for all j € N. Since Y(0) = 0, this

implies (y.) is bounded away from 0. Therefore

3
2%(y.)
' s LS
"‘(Yj”x' > Y (yj) lyjl 'Yj'

is bounded away fror 0. It follows that (X(yj)) is a bounded sequence and therefore by
(ii) of Proposition 2.10, s(yj) has a convergent subsequence.

To get the compactness of K, we use a variant of an argument of BENCI [15]). Let
B C X be bounded. Without loss of generality, B = Bp, a ball of radius R about 0.
By 3° of Proposition 3.1, n([0,1] x Bp) C Bp,y. Therefore S(n([0,1] x Bp)) C S(Bpyy)

which is compact. If

‘-
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{awla € 0,11, w € 8(Bp, )} ,

Y

-

then Y is compact as is Y, its closed convex hull. Recalling that w(f) € [0,1), it

follows that for each 7t ¢ [0,8] and =z ¢ Bp
T
Z = (exp(f w(n(r,z))dr)iS(n{t,2)) e ¥ .
8
Hence for 8 ¢ {0,1],
] -
g Zdt € Y ,

K is compact, and the proof is complete.

Now define MY = x* nM ,

w=x% e x" @ spani{p)
where o = (sin t)ey = (cos tlep,q € xt. set M~ =w NM. Define

(3.6) a = inf A(z)
zeMt

Proposition 3.8: 0 < a €& ¢,

Proof: If z e X', Mz) = 1z12. 1f a=0, 0¢ft, =M¥. since by (11) of Proposition
2,18, M bounds a neighborhcod of 0 in X, this is impossible and a > 0. Next
observe that

a< inf A(z) € sup A(z) = a .
span{w}"M -

0 4+ 2°. Therefore since Alg) = 7,

Finally note that if 2z eM™, z = r(z)o + z
(3.9) A(z) € ri(z)r .

Since z ¢ M, by (2.2),




>
L a
D
L]
"
(3.10) s/ mlzlfae < 1= vz .
..Q
N Hence (3.10) and the orthogonality of x°, x¥ in 12 imply
Y
2%
" (3.11) -2-:; > ::(z)2 g |o|2dt = 2|u:(z)2 .
o
) Therefore (3.7) and (3.11) show
"
(3.12) d<wr(n)? <,
m
5 Our goal is to obtain a critical value c¢ of AIM via a minimax argument. The
:: class of maps which will be used to define ¢ can now be introduced. Let T denote the
& set of h € C(X,X) satisfying the following three conditions:
() hz) =z 1f A(z) £ [0,& + 1) or if |¥=z) - 1] > 3.
. (T3) PTh(z) = e®{Z)2~ 4+ g(z) where o € C(X,R*), 0 < 9 <Y, Y dependingon h, and
A3
N
:._ Q 1is compact.
A
> {(Ty) h:M+M. \
I Remark 3.13: Observe that T 1is closed under composition. Moreover 1°-5° of Proposition
Y
:: 3.1 imply n(1,°) € T provided that 0 < c - E < c+ € <3+ 1. This inequality holds in
-
N
3 particular if ¢ € (0,&] and € is chosen appropriately.
- The mappings in T satigfy an important intersection property.
" Proposition 3.14: If he T, then hd™) NN* # 4.
:' This proposition will be proved in §4. Assuming it for now, define
. (3.15) c = inf sup A(h(z)) .
. he ZEM-
Proposition 3.16: a < c <3 and c is a critical value of A|M.
. Proof: If h e I, by Proposition 3.14,
s (3.17) sup A(h(z)) > sup A(Z) > 4inf A(E) =& .
= - +
- zel zentM )N ge’
§
L -12-
. .
»
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Since (3.17) holds for all h €T, ¢ > 6. On the other hand h(z) = z ¢ T. Consequently 2" '

* (3.18) c ¢ sup A(z) =& ,
zeM™ }

To prove that ¢ 1is a critical value of AI M suppose on the contrary that KX, = b 3%
! Then if € < min(% d,1), Remark 3.13 shows n(1,+) as determined from Proposition 3.1 k
N belongs to T'. Choose h ¢ T such that
N (3.19) sup A(h{z)) € c + ¢

zeM™

where € is obtained from Proposition 3.1. Since n(1,h) €T, by 6° of Proposition 3.1,
(3.15), and (3.19),

(3.20) c € sup AM(n(1,h(2z))) <€ c - ¢
zeM”

S IR T S PO

a contradiction and the proposition is proved.

v

Completion of proof of Theorem 1.2 for H ¢ c2: By Proposition 3.16, there is a z ¢ M

such that A(z) = ¢ and

]
o e e e N

A

(3.21) (A'(2) - A(2)¥'(2))(5) =0

for all 7 € X. This implies z is a classical solution of (2.4). 1Indeed =z ¢ X

L, implies f,(z) € 1?2(s',®™). Moreover by (Hy), Bp(p(t),q(t)) is 0dd about 0 and T« :;
" and T{q(p(t),q(t)) is even about 0 and 7. Taking £ = 1 in (3.21) yields .‘::':
e
: e
(R, (z(t)}] = 0 where CT
" , 2 S
-\. [w] = 37 w(t)de . :--_,.
- 0 ‘..\.r
~ vah
- N
- Since [ﬁp(p(t),q(t))l = 0, Fourier expansion shows the equations =
S ar T
: (3.22) W ¢ Mz2)B (p(t),qlt)) s
s dQ _ o
: (11) 32 = M2 (p(e),qlt)) ol
. have a unique solution Z = (P,Q) € X N w1'2(31,lt2“) with [Q] = [g]l. For amooth .
N L = (p,¥) € X, taking the inner product of (3.22) (i) with ¢ and (ii) with ¢ gives
[ -
N -13-
Q)
~. 1
-‘ - .1
- ol
7 O
S N e et




(3.23) (A'(2Z) = A(z)Y'(2))(%) =0 .

Comparing (3.21) and (3.23) shows .

2%
(3.24) ] Wp-P)¢e¥b=-(q~-Q «9at=0
0

for all smooth (9,¥) € X wvhere (p - P] =0 = [q - Q). Hence
z=2¢w2(s',B") ccs!, ™). Thus (3.22) shows z € c'(s',®®™) and is a classical
solution of (2.4). But (2.4) is a Hamiltonian system so #H(z(t)) 4is independent of ¢t.

Consequently

2%
(3.25) V=¥ = [ Blz(e)ae = R(z(e))
0

so z(t) € ' = 5°1(1). Pinally Lemma 2.3 gives a solution of the desired type of (HS).

~14-




§4. The Intersection Theorem and the General Case of Theorem 1.2

In this section we will prove the intersection theorem: Proposition 3.14, and obtain
the C'I case of Theorem 1.2. Por the former result, the following technical result is
required:

Proposition 4.1: Let V be a k dimensional subspace of ' and Vl its orthogonal
complement. Suppose h € C(R",R") and satisfies
(hy) h =14 on vl
and

{h,) there is an R > 0 such that h = id on RP\BR.
et ¥ ¢ ¢'(R',R) and satisfy

(¥9) ¥(0) =0 and x « ¥'(x) >0 for x#0
and

(b,) there is a p € (0,R) such that v ey c Bg-
Let v € VN 3B, and set Y = aspan{v} e v'. Then there is a £ € Y such that

(4.2) V(E) = p and h(E) eV .

Proof: Let Q = {rv|0 < r < R} @ (B Avh) s QC Y. We will find £ € Q. Let P and
Pl denote the orthogonal projectors of R" onto V and Vl. Solving (4.2) for £ € ¥
is equivalent to finding £ € ¥ such that

(4.3) (1) v(g) = o

(1) P'n(e) = o.
For y €Y, set
Ay) = (i), Prhiy)) .

Identifying R X ¥ with R X Rp-k and Q with a subset thereof, & can be considered
to be a continuous map of R X .p-k into itselt. Any zero of ¢ is a solution of
(4.3). Consider d(¢,Q,(p,0)), ¢the Brouwer degree of ¢ with respect to the bounded
open set Q and the point (p,0). We will show this degree equals 1 and therefore (4.3)
has a solution in Q. 1In order for the degree to be defined, it is neceasary that

® # (0,0) on 9Q. Writing y € Q as (r,w) € R X K, if r=0, by (hy), h = id

-15=




80 by (¥,), &(y) = (¥(w),w) # (p,0).

Ay) = (Y(Rv + w),w) ¥ (p,0)

implies

defined. We claim

(4.4)

Since (p,0) € Q0 via (¥,),

“[Lv.q

and the proof is complete.

et e

for ye¢d anda 6 ¢ (0,11,

fly) = ({t = 8)U(w),w) # (p,0); 1if

since R, V(Rv) > p; it

%,(y) = &(y) and &,(y) =y on 3q,

yields (4.4)

and the proof is complete.

f Remarks 4.5: (1)
Y € Y such that h(y) € v N v~ Y(p).
of AlM as a maximin rather than a minimax.
\ and V$(Rv) > p for some v e VN 831.
can be any complementary subspaces of .

Now we can give the:

P

j to

the projector of X onto X,.

"(z) > on

- Hence Y(z) » = as

such that ¥(z) » 2 {f 2z ¢ X, and

Arguing as for ¢,

-{16=

I¢ r =R,

(hz) implies h = i4 and

h=4id and ¥(y) = (Y(xv + w),w) ¥ (p.0).

since V¥(Rv) > p via (01)‘(*2)'

Therefore

d('rQ(pro)) = 4(14,9,(p,0)) .

4a(14,Q0,(p,0)) = 1

Finally {if

a(4,2,(p,0)) 1is

lw] = R, (hy)

To verify (4.4), consider the homotopy

$oly) = (O + (1 - 0)u(y), B n(y))

if r =20,

(11)

1z1 > Ri'

2

Therefore if h ¢ T,

L2

1z) + » qyniformly for =z € x.

[wl = R, 9g(y) = (6r + (1 = )d(rv + w),w) # (p,0).

r =R, %(y) = (6R + {1 ~ B)¥(RV + w),w) # (p,0)

Since

the homotopy invariance property of Brouwer degree

The same hypotheses and an appropriately modified & also yield an

This fact can be used to obtain a critical value

An examination of the proof of

' Proposition 4.1 shows we need merely take ¥ € C(R",R)

Define hy(z) 2 P h(z).

Proof of Proposition 3.14: Let xi denote the subspaces of xt

By (2.2),

and weaken (91) to ¥(0) =0

Also at the expense of redefining Bgs V and Vl

defined by restricting

1< 3 <1 in the definition of X'. Let X, = X’ @ X] @ X; and let P, denote

In particular there is an Ry >0

by (P1),
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l

h(z) = z = hy(z) if z eX, and Uz} > R,. Moreover it =z ¢ X’ ® X], A(z) < 0.
Therefore by (I'y) again, hy(z) = z on x% e XI. Since Y|x1 satisfies (v )-(¥,) of
Proposition 4.1, this result implies there is a g, €W, N M  such that hi('l) € xI
where W, = X" o X] @ span{e}.

We claim (z;) is bounded in X. Let 2z, = zg + zI + zI. As was noted earlier,
these components of z, are mutually orthogonal in Lz. By Proposition 2.18 (iii),
(z;) 1is bounded in Lz(s1,R2“). Since x° is finite dimensional and zI is a bounded
multiple of o, (zg + zI) is bounded in X. If (‘I) is unbounded,

Alzy) = lle2 - lz;l2 + -=, Therefore for large 1, h(zy) = z; = h (z;) € W nM= N xI,

l.ee 2z = zI for large 1 and (z,} is bounded in X. It is clear that (zg + zI)

possesses a convergent subsequence. By (Pz),
- olzy) _ -
0=Philzy) =e 2 + P PyQlzy)

or
(4.6) z] = -e-'(zl)P-PiQ(zi) .
Since Q 1is compact and 0 € ¢(°*) < Yy, (4.6) shows (‘I) also has a convergent
subsequence along which 2z, + ¢ €eM~. Since h is continuous, Pih(’i) + h(z) € x*.
Finally by (T;), h(z) € M'. Thus h(M™) NM* ¥ 6 and the proof is complete.

Next we will give the
Proof of Theorem 1.2 for H ¢ c‘gnz“,n)z Let (ﬁk) be a sequence of ¢2 functions which
are homogeneous of degree 2, satisfy (33), and converge to # in C' uniformly in a
neighborhood of 52“'1. The c? version of Theorem 1.2 implies there is a 2z, € X which
is a classical solution of
(4.7 2 = A iy, (z)

and z,(0) € A '(1). Equation (4.7) implies that

A 2
(4.8) e, = Alg,) = -% { 2, * B lzae = 2my .

-17-
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By Proposition 3.16, ¢, » 0. Suppose that (c,) is bounded away from 0 and =. Then
(4.8) shows the same is true for (Xk). Therefore (4.7) provides L” bounds for ik and
(4.7) and the Arzela-Ascoli Theorem imply a subsequence of (Ak,zk) converge in R x c1
to a solution (A,%) of (2.4). Following the c! version of the proof of Lemma 2.3 then
gives a solution of (HS) of the desired type. (Now 8 in (2.6) is merely continuous so
(2.6) need not have a unique solution but any solution will suffice.)

It remains to get the bounds for cp. By Proposition 3.16, there are constants a,,
Ek such that
(4.9) a, < Sy < ak
where a,, ak are defined in (3.6), (3.7) with M = M,. By (3.12), Ek < nn;1 where

2n-1

m, is defined in (2.1). since #, + A uniformly on s , m *m 8o for large k,

™ » m/2 and
(4.10) o < Ty € 2w L
Thus (ck) is bounded away from «. To get a lower bound for Cis recall that by (2.2),
= 2

with M, defined in (2.1) and M, *M as h + =, Hence "k < 2M for large k and if
z € Mk'

2r 2n

=L Ama<df 212z w2 .
k L 0

2% 0

1f z ¢ ¥1(1), there is an a, (z) > 1 such that
9 2%
v (a, (2)2) = -ﬁcf; B (a (z)z)ae = 1 .
Therefore
{4.11) Gy = inf A(z) € &
ze? \(*
for large k. The argument of Proposition 3.8 shows a, > 0. Hence (4.9) and (4.11)

show ({c.) is bounded from below and the proof is complete.
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